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Abstract. This paper is concerned with the critical properties of antiferromagnetic 
Takhtajan-Babujian models with spin S = 1, i and 2. The leading eigenenergies of this 
Hamiltonian, in a finite chain, are calculated by investigating numerically and analytically 
the Bethe ansatz equations for the finite system. The critical exponents and the conformal 
anomaly are obtained from their relations with the eigenspectrum of the finite Hamiltonian. 
The appearance of logarithmic corrections produces poor estimates. However, a combina- 
tion of analytical and numerical methods produces very good estimates. Our results strongly 
support the conjecture that the Wess-Zumino-Witten-Novikov non-linear U models with 
topological charge k = 2S are the underlying field theories for these spin-S statistical 
mechanics models. 

1. Introduction 

Most of the statistical systems at criticality (Cardy 1987) are believed to satisfy the 
basic assumptions-short-range interactions, scale invariance, rotational and transla- 
tional invariance-that ensure conformal invariance (Polyakov 1970). This symmetry 
powerfully constrains the possible universality classes for the critical behaviour of 
one-dimensional quantum systems (or equivalently finite-temperature two-dimensional 
classical systems) (Belavin et a1 1984a, b, Friedan et a1 1984). Within conformal theory 
these classes are characterised by a single dimensionless number c, the central charge 
or conformal anomaly of the associated Virasoro algebra, the irreducible representa- 
tions of which determine the operator algebra describing the critical behaviour. If c 
is less than unity and the critical theory is unitary (Friedan et al 1984) both c and the 
critical exponents associated with the different correlations are quantised: 

m = 3 , 4 , 5  , . . . .  6 
m ( m + l )  

c = l -  

The scaling dimensions X = h + 6 (related to the critical exponents) of the primary 
operators are given by the Kac formula 

[p(m+1)-qmI2-  1 
4m(m+1)  

l s q s p < m - l .  h , ,  = 

When c = 1 equations (1.1) hold with m = 00, allowing h , ,  to take any positive value. 
Indeed it appears that unitarity does not introduce any constraint on the possible 
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values of c and h for c 3 1. Nevertheless, when the primary operators obey a larger 
algebra than the Virasoro algebra a relationship between c and h may occur even for 
c > 1. Examples of these are the models satisfying supersymmetry (Friedan et a1 1985, 
Bershadsky et a1 1984), Zamolodchikov-Fateev algebra (Zamolodchikov and Fateev 
1985) and Kac-Moody algebra (Knizhnik and Zamolodchikov 1984). In this last case 
we have the Wess-Zumino- Witten-Novikov model whose conformal anomaly is given 
in terms of the charge k and the particular semisimple group G which define the 
Kac-Moody algebra (Knizhnik and Zamolodchikov 1984) 

k D  
C,+k 

c=- 

where D is the dimension of G, C, = Sabfocdfbcd and f a b c  are the structure constants 
of G. The scaling dimensions of the primary operators ( X  = h + 6) are given by 

CI 

C,+ K 
h =------- 

where cI = bPtP and tP are the generators of the 1 representation of G. 
On the other hand (Blote et a1 1986, Affleck 1986a) the low-temperature specific 

heat of an infinite quantum spin Hamiltonian is related to the central charge of the 
conformal algebra governing its critical behaviour. Using this fact Affleck (1986a, b) 
calculated the conformal anomaly for a set of integrable one-dimensional quantum 
Hamiltonians introduced simultaneously by Babujian (1982, 1983) and Takhtajan 
(1982): 

c = 3 S / ( l + S ) .  (1.5) 
These Takhtajan-Babujian models describe the dynamics of spin-S particles (see 0 2) 
and their conformal anomaly (1.5) coincides with (1.3) when k = 2S, G = SU(2) ( D  = 3, 
C, = 2). This fact and an approximate mapping between those models (Affleck 1986a, 
b, c, Affleck and Haldane 1987) lead to the conjecture that the Wess-Zumino-Witten- 
Novikov models with symmetry group SU(2) and topological charge k = 2 S  are the 
underlying field theories describing the criticality of the s p i n 3  Babujian-Takhtajan 
models. This implies from (1.4) (Affleck and Haldane 1987) that these spin models 
should have primary operators with scaling dimensions X j  given by 

X, = j (  j + 1)/( 1 + S) j = o , &  1 , . . . )  s. (1.6) 
In this paper, in order to independently verify these conjectures, we will calculate 

directly the conformal anomaly and some of the scaling dimensions occurring in these 
spin models. These calculations will be done by exploiting a set of important relations 
between these quantities and the eigenspectrum of the Hamiltonian with a finite number 
L of spins. These relations are consequences (see Cardy (1987) for a recent review) 
of the conformal invariance of the infinite system at the critical point. The relevant 
relations, for our purposes, may be stated as follows. To each primary operator 4, 
with anomalous dimension X ,  and spin S,, in the operator algebra of the critical 
infinite chain, there exists a set of states in the quantum Hamiltonian, in a periodic 
chain of L sites, whose energy and momentum are given by 

E,,,. = E p ’ + q x ,  + n + n o  +o(L-’)  

P,,,. = - ( S ,  + n - n’) 

n, n’=O, 1 , 2 , . .  . ( 1 . 7 ~ )  

n, n’=O, 1 , 2 , . .  . (1.7b) 

L 
2rr 
L 
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respectively as L+co. The ground-state energy of the finite chain is denoted by ELo) 
and the constant (model-dependent) is introduced in order to ensure that the resulting 
equations of motion are conformally invariant (von Gehlen et a1 1986). In addition 
to the above relations, conformal invariance also predicts (Blote et a1 1986, Affleck 
1986a) that, at criticality, the L-site ground-state energy EAo) should behave as 

as L+co. Here c is the central charge of the conformal class governing the critical 
behaviour and e ,  is the ground-state energy per particle in the bulk limit (,!,+CO). 

Previous attempts to verify the above conjectures, for the spin-1 Takhtajan-Babujian 
model, based on finite-size calculations, were reported in the literature. The spin-1 
model was studied for lattice sizes up to L = 12 (Blote and Cape1 1986, Bonner et a1 
1987, Blote and Bonner 1987 and references therein). However, due to small system 
sizes and the presence of logarithmic corrections, as we shall see in 0 3, these results 
produced no convincing numerical agreement with the above conjecture. The existence 
of a Bethe ansatz for these spin-S models (Babujian 1982, 1983, Takhtajan 1982) will 
allow us, in this paper, to calculate their eigenspectrum for much larger chain sizes. 
Analysing numerically and analytically their Bethe ansatz equations, in the case of 
spin S= 1, # and 2, we were able to extract very good estimates for the conformal 
anomaly and several anomalous dimensions, rendering a very good test of the conjec- 
tures (1.5) and (1.6)t. An earlier calculation (Ziman and Schulz 1987), also based on 
a numerical analysis of the Bethe ansatz equations, was presented for the conformal 
anomaly and the first scaling dimension in (1.6) for the spin S = # model, with good 
agreement with (1.5) and (1.6). 

The layout of this paper is as follows. In 0 2 we present the model as well as their 
Bethe ansatz (BA) equations. In 0 3 we rederive these equations using the string 
assumption and show that they do not produce the correct finite-size corrections. In 
9 0  4 and 5 we discuss the numerical solutions of these BA equations and present our 
results. Finally our conclusion is presented in 0 6 and the analytical calculation of the 
finite-size corrections of the energies, using the string hypothesis, is presented in an 
appendix. 

2. The spin-S Takhtajan-Babujian model 

Since the success of the Bethe ansatz in solving the spin-S = 4 Heisenberg model (Bethe 
1931) much effort has been expended in order to obtain generalisations of this model 
which preserve exact integrability through the Bethe ansatz (see, e.g., Lieb and Wu 
1972, Thacker 1981, Baxter 1982, Gaudin 1983, Tsvelick and Weigmann 1983). A 
generalisation of the Heisenberg model to arbitrary spin S, preserving the SU(2) 
symmetry and integrability, was obtained by Takhtajan (1982) and Babujian 
(1982, 1983). These Takhtajan-Babujian models describe the dynamics of antifer- 
romagnetic spins and for a L-site chain they are defined by the Hamiltonian 

(2.la) 

'i A short account of our results in the case of spin 1 has already been presented (Alcaraz and Martins 1988a). 
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where Sn.= ( S ; ,  S: ,  S : )  are SU(2)  operators of arbitrary integer or half-integer spin S 
attached at the site n. The function Q Z S ( x )  is a special polynomial of degree 2 s  which 
ensures exact integrability and is defined by 

( 2 . l b )  

where x, = f[ 1( 1 + 1 )  - 2 S ( S  + l)] and J (  >O) is the antiferromagnetic coupling constant. 
Apart from a harmless constant the case S = reduces to the well studied Heisenberg 
Hamiltonian 

while in the cases S = 1 , ;  and 2, which we are interested in this paper, the Hamiltonians 
are 

and 

respectively. 
The general Hamiltonian (2 .1) ,  yith periodic boundary conditions imposed, com- 

mutes with the total spin operato; S' = E n  S :  and consequently the associated Hilbert 
space can be separated, in the S' basis, in 2 L S S 1  disjoint sectors labelled by the 
eigenvalues of S', namely r = 0, *l, * 2 , .  . . , *LS. We can restrict ourselves only to 
the sectors with r 3 0 because the sectors r = + k  and r = -k are degenerate due to the 
spin reversal symmetry of (2 .1) .  In the Bethe ansatz formulation for these models 
(Takhtajan 1982, Babujian 1982) the eigenenergies, for a given sector r, will be given 
in terms of ( S L -  r )  complex roots ( A , ,  A 2 , .  . . , A s L - r )  of the non-linear set of Bethe 
ansatz equations 

The energy and momentum of the eigenstates are 

S L - r  s 
E = - J  1 - 

j = l  hf+s2 

and 

(mod 27r). 

(2.6) 

(2 .7a)  

(2 .7b)  
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The exact solution of the system (2.6), in the bulk limit (Takhtajan 1982, Babujian 
1982, 1983), reveals that these models are gapless (critical) with an antiferromagnetic 
ground state with energy per site em (hereafter we assume J = 1) given by 

e,=-1 ( S =  1) 

em= -(log2+;) (S=Z) 

e c c 3  = - - 4  (S = 2) 
etc, and a momentum dispersion relation 

&k = 477 sin( k) 

independent of the spin S. 

0 G k C . n  

3. String hypothesis and the large L limit 

A standard way of transforming the system of complex variables (2.6) into a set of 
real ones is the so-called string hypothesis, which asserts that as L+co the roots Aj 
cluster in complex n-strings. Each n-string contains n complex roots of the form 

A I k  = AJ+$(n  + 1 -2k) k = 1,2, . . . , n (3.1) 
where A; are real numbers corresponding to the centre of the n-strings. The above 
assumption allow us to parametrise an arbitrary configuration of roots by the numbers 
U, of strings of size n such that C, nv, = SL- r. The set of equations (2.6), for a given 
configuration of strings { v,}, reduces to the system of equations for AJ ,  j = 1,2 , .  . . , U, 
(see, for example, Babujian 1983) 

where 

(3.2b) 

and 

e,(x) = 2 tan-’(xln). (3.2e) 
The numbers Qr are integers or half-integers, depending on the particular distribu- 

tion { v,} of strings. The ground state, which occurs in the r = 0 sector, corresponds 
to a sea of 2s-strings ( vZs = L/2, U, = 0, m f 2S), while the lowest energy state in the 
sector r = 1 corresponds to vZs =;L- 1, v2s-1 = 1 and so on. The numbers QJ that 
appear in (3.2) are integer or half-integers and arise because of the complex logarithms 
occurring in the deduction of (3.2) from (2.6) and (3.1). For example, for the lowest 
energy in the r sector ( r  C 2S), where uZs = tlv - [ r/2S], v2s...{r,2sl = 1 ([ r/2S] and 
{r/2S} are the integer part and the rest of the ratio r/2S), these numbers are 

( 3 . 3 ~ )  of”= -f( v2s - 1 ) +  I - 1 I =  1, * .  * ,  v*s 

(3.3b) 
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Within the string hypothesis, from ( 2 . 7 ~ )  and (3.1) the eigenenergies for a distribu- 
tion {v,} of strings are given by 

m U, 

(3.4) 

where, as usual, the prime indicates the derivative. 
It is important to stress here that the assumption (3.1) is valid only in the L+oo 

limit whenever the state contains n-strings ( n  > 1). As a consequence, we do not expect 
that the finite-size corrections to the eigenenergies, obtained using this assumption, 
will be correct. Although these corrections are not correct quantitatively they will give 
an idea of the true finite-size corrections of the eigenspectrum. These corrections, 
within the string hypothesis, can be calculated by using an analytical method developed 
by Woynarovich and Eckle (1987a). These calculations, although not trivial, are very 
lengthy and we explain their main steps in an appendix. The leading finite-size 
corrections are calculated for the lowest energy of the sector r (0 ,1,2, .  . .). From 
(A23) the ground-state energy E:, using the string hypothesis, for the L-site chain 
behaves, as L+ao like 

( 3 . 5 ~ )  

while from (A24) the mass gap corresponding to the lowest energy E;', of sector r, 
behaves as L +  00 like 

( E : ' - E : ) / L = , f - + O (  r 2 r 2  b ln(1n L )  ) 
~ S L  ~ ~ 1 n  L L2(ln L ) ~  

(3.5b) 

The numbers a and b depend on the values of the spin S and sector r (Alcaraz and 
Martins 1988b). 

On the other hand, using the value i'= 7712 (for all S ) ,  obtained from the dispersion 
relation (2.9) (von Gehlen et a1 1986), in relations (1.7) and (1.8), with expressions 
(3.5) we obtain c = 1 for all values of the spin S and X, = r2/4S, r = 1,2 , .  . . , for the 
scaling dimensions of the operators occurring in the model. These results, as we already 
expected, are in complete contradiction with the conjectures (1.5) and (1.6) for S > 1, 
because the string hypothesis in these cases is valid only in the infinite-size limit. In 
the case of S = 4 equations (3.5) give us the correct results of c = 1 and XlI2 = 4 because, 
in this case, E:' consists of a sea of particles (1-strings) and the string hypothesis is 
valid even for finite L. Although (3.5a, b )  do not give us the correct results we expect 
that the logarithmic corrections presented in (3.5) will also be present in the true 
finite-size energies. These corrections will decrease the convergence rate of our esti- 
mates for the conformal anomaly and scaling dimensions, especially for the scaling 
dimensions where the corrections are stronger. These logarithmic corrections are 
exactly known in the Heisenberg model S = 4 (Woynarovich and Eckle 1987a, b, 
Woynarovich 1987, Alcaraz et a1 1987, 1988, Hamer et a1 1987) and their presence in 
the model with arbitrary spin explains the poor estimates of previous finite-size 
calculations of the correlation function critical exponent '17 of the spin-1 model (2.3) 
(Blote and Cape1 1986, Bonner et a1 1987, Blote and Bonner 1987). As in the Heisenberg 
model we expect that these corrections occur because the operator governing the 
finite-size corrections is marginal for these spin models. 
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4. Numerical solution of the Bethe ansatz equations 

In order to obtain the correct finite-size corrections of the lowest energies in the sectors 
r = 0, 1,2, . . . , of the models (2.1) we solved numerically the original ( L S -  r)-coupled 
non-linear complex Bethe ansatz equations for spins S = 1, $ and 2. We solve these 
equations by using a Newton-type method. Firstly we solve the more simple set of 
real equations (3.2) and use this solution, together with (3.1), to produce an initial 
guess for the complex root system (2.6). In table 1 we exhibit the complex roots for 
the ground-state energy of the sixteen-site chain of spin S = 2 .  We also give in this 
table the string’s centre coordinates, obtained by solving the corresponding equation 
(3.2). In tables 2 and 3 we also show these roots for the lowest state in the r = 1 sector 
of the spin-; model with L =  16 and L =  20, respectively. In order to verify if the 
solutions we found numerically correspond to the lowest energy state, in a given sector 
r, we diagonalise the Hamiltonians (2.3)-(2.5) directly for small sizes ( L -  10-12) and 
compare their energies with those obtained from (2.6). 

On the other hand, we observe that, for certain values of the sector and spin, the 
string solution is not a very good initial guess in solving (2.6). For example, this occurs 
for the r = 1 sector of spin 1. If we compare, for this case, the complex roots for L = 16 

Table 1. Complex roots A j  = A Y  + i A j  ( j  = 1-32) of the system (2.6) corresponding to the 
ground state of the spin S = 2 in a L= 16 site chain. The other roots not shown in the 
table are obtained from these by the combination * A y * i A i .  The roots +A:’ are the 
corresponding ones obtained by solving (3.2). 

0.790 764 41 
0.770 641 99 
0.387 753 87 
0.386 237 01 
0.202 074 33 
0.201 633 96 
0.063 610 60 
0.063 499 77 

0.525 126 70 
1.584 745 20 
0.506 240 73 
1.522 850 69 
0.503 939 40 
1.514 538 90 
0.503 283 39 
1.512 146 86 

0.769 265 10 
0.384 626 65 
0.201 040 90 
0.063 339 91 

Table 2. Complex roots A, = A: +iAj ( j  = 1-23) of the system (2.6) corresponding to the 
state with lowest energy in the sector r = 1 of the spin S = 5 model in a L = 16 site chain. 
There is a root at the origin ( A ,  = 0) and the other roots not shown in the table are obtained 
from these by taking the negative (complex conjugate) of the real (complex) roots. The 
five roots 0, * A p i i A :  give us the structure that is tending toward ( L + m )  a 3-string and 
a defect A’ = (0, *i). The roots *A:” and 0 are the corresponding solution of (3.2). 

1 0.594 225 42 0.930 295 54 0.574 727 80 
2 0.528 275 24 0 0.302 851 83 
3 0.343 764 11 0.954 389 34 0.136 881 41 
4 0.285 664 06 0 0 
5 0.186 056 05 0.964 783 93 
6 0.130 235 32 0 
7 0.059 296 25 0.968 820 10 
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Table 3. The same as table 2 for the L = 2 0  site chain. The five roots 0, *A:+iAL are 
those tending toward a 3-string and a defect A *  = (0, i i ) .  

.i A P  A: A;:” 

1 0.667 056 87 0.933 472 57 0.65 1 553 01 
2 0.601 955 63 0 0.383 961 60 
3 0.41 8 407 45 0.958 863 5 5  0.227 289 19 
4 0.363 864 19 0 0.107 066 40 
5 0.266 046 74 0.970 074 61 
6 0.217 424 67 0 
7 0.149 512 96 0.975 284 32 
8 0.102 842 26 0 
9 0.048 364 74 0.977 408 48 

and L = 20, given in tables 2 and 3 respectively, we clearly see that as L increases, 
instead, the two pure imaginary roots cluster in a 2-string (-i/2, i/2), according to the 
string hypothesis, they prefer to form a defect (4, +i). The same fact occurs in sectors 
r = 4 of spin and r = 1 and 5 of spin 2. This implies that the string hypothesis, for 
some excited states, is not exact even in the infinite L limit. If we modify the string 
hypothesis (3.1) by introducing the above defects we obtain a different set of equations 
than (3.2) but the infinite L solution gives us the same dispersion relation as in (2.9) 
(Alcaraz and Martins 1988b). Calculating analytically the finite-size corrections as in 
the appendix, with these defects included, we found that while the first-order corrections 
remain the same as in the string hypothesis (see (3.5)) the logarithmic corrections are 
very different (Alcaraz and Martins 1988b). In these cases we use as the initial guess 
for the solution of equations (2.6) the solution obtained from these modified string- 
defect equations. 

5. Results 

In this section we present our main numerical results for the conformal anomaly and 
critical exponents for the models (2.3)-(2.5). 

5.1. Conformal anomaly 

The conformal anomaly can be extracted from the large L limit of the sequence 

C,= -(Eo-e,L)12L/rr2 (5.1) 

obtained from the relation (1.8) with the value 5 = r / 2  inferred from the momentum 
dispersion relation of the model (2.9) (von Gehlen et a1 1986). In (5.1) Eo is the ground 
state of the finite system and e, is the bulk limit of the ground-state energy per particle, 
given by (2.8). 

In table 4 ( a ) - ( c )  we show, for spins 1 ( L  up to 84), 3 ( L  up to 80) and 2 ( L  up to 
64), these sequences for the true energies Eo and for the energies E t  obtained by 
solving equations (3.2), derived under the string hypothesis. We also show, in these 
tables, the extrapolated results together with the conjectured ones. These extrapolations 
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Table 4. Finite-size sequences for the extrapolation of the conformal anomaly for the ( a )  
spin-1, ( b )  spin-; and (c )  spin-2 model. E t  and E,, are the ground-state energies obtained 
using and not using the string assumption (3.1), respectively. The conjectured results are 
given by (1.5). 

L -E,/ L - E f / L  - ( E ,  - e&) 12L/ 7’ -( - e,L) 12L/ 7’ 

( a )  
8 1.020 086 1.013 350 1.562 956 

20 1.003 122 1.002 078 1.518 365 
36 1.000 958 1.000 638 1.510 172 
52 1.000 459 1 .OOO 305 1.507 532 
68 1.000 268 1.000 178 1.506 217 
84 1.000 175 1.000 117 1.505 418 

1.038 861 
1.010 403 
1.005 483 
1.003 968 
1.003 236 
1.002 799 

Extr - - 1.500 (4) 1.000 (2) 

Conj 1 .o 1 .o 1.5 1 .o 

( b )  
8 1.217 487 1.206 658 1.894 045 

20 1.196908 1.195 230 1.829 403 
32 1.194607 1.193 957 1.818 656 
44 1.193 917 1.193 574 1.814 368 
56 1.193 622 1.193 411 1.812 046 
68 1.193 469 1.193 326 1.810 575 
80 1.193 379 1.193 276 1.809 549 

1.045 097 
1.012 984 
1.007 835 
1.005 839 
1.004 784 
1.004 130 
1.003 682 

Extr - - 1.800 (8) 1.000 (3) 

Conj 1.193 147.. . 1.193 147.. . 1.8 1 .o 

( C )  

8 1.360 614 1.346 815 2.122 890 
20 1.327 529 1.335 421 2.040 362 
32 1.334 961 1.334 144 2.026 100 
44 1.334 192 1.333 761 2.020 291 
56 1.333 862 1.333 597 2.017 106 
64 1.333 738 1.333 535 2.105 664 

1.049 057 
1.015 201 
1.009 466 
1.007 161 
1.005 91 1 
1.005 350 

Extr - - 2.00 (1) 1.000 (5) 

Conj 1.333.. . 1.333.. . 2.0 1 .o 

were done using the VBS approximants (Van den Broeck and Schwartz 1979, Hamer 
and Barber 1981). We see from these results that our numerical results are in excellent 
agreement with conjecture (1.5). The good convergence rate of these data indicate 
that, as in the case of the string energies (see (3.5a)), the correction term for (5.1) is 
of o(l/ln 15)~). If we extrapolate the difference between the true energies obtained by 
solving (2.6) and the string energies obtained from (2.11) we hope to cancel, if not 
totally at least partially, this next correction term. In fact, using these differences for 
the extrapolated values together with the exact result ( c  = 1) for the string energies 
gives us slightly better estimates: c = 1.5001 f 0.0002 ( S  = l ) ,  c = 1.8004* 0.000 (5) ( S  = 
+) and c = 2.0005 f 0.0005 ( S  = 2). 
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5.2. Scaling dimensions of the operators 

The scaling dimensions of the operators governing the several correlation functions 
of the critical model can be estimated by using relations (1.7). To each r sector 
( r  = 1,2, . . .) we expect that the mass gap amplitude of the lowest state E ,  of this sector 
is related to a scaling dimension X ,  of a primary operator. These dimensions can be 
estimated by the large L limit of the sequences 

X,(L)=(E,-E,)L2/7r*. (5.2) 
In table 5 we present these sequences for the r sectors ( r  = 1-5) of the S = 1, and 

2 models. Due to numerical instabilities we only calculate the lowest energy with r = 4 
sector of the spin-2 model for L up to 32. The extrapolated results of table 5 were 

Table 5. Mass gap amplitudes and extrapolations for sectors r = 1-5 of the ( a )  spin-1, ( b )  
spin-; and (c )  spin-2 model (see (5.2)). The conjectured values are given by (1.6) and (6.1). 

L X , ( L )  X d L )  X A L )  X A L )  X d L )  

( a )  
8 0.336 784 0.740 494 

20 0.337 846 0.803 857 
36 0.339 962 0.829 474 
52 0.341 389 0.841 900 
68 0.342 426 0.849 709 
84 0.343 229 0.855 258 

Extr 0.3 (5) 0.9 (4) 

1.672 538 2.407 210 3.644 041 
1.886 674 2.960 138 4.662 006 
1.958 793 3.155 378 5.002 364 
1.991 375 3.239 970 5.144 823 
2.01 1 296 3.289 661 5.227 074 
2.025 270 3.323 434 5.282 452 

2.2 (5) 3.7 (7) 6.6 (1) 

Conj 0.375 1.0 2.375 4.0 6.375 

( b )  
2.500 350 

20 0.277 241 0.654 902 1.114668 2.1 12 626 3.068 554 
32 0.276 194 0.665 726 1.155 600 2.186 552 3.234 594 
44 0.275 981 0.671 960 1.177 753 2.224 442 3.317 209 
56 0.275 994 0.676 234 1.192 276 2.248 737 3.368 604 
64 0.276 084 0.678 461 1.199 627 2.260 93 1 3.393 840 
80 0.276 203 0.681 991 1.210 970 3.431 857 

8 0.284 978 0.624 958 0.991 413 1.851 179 

Extr 0.2 (8) 0.7 (6) 1.3 (9) 2.6 (5) 4.0 (1) 

Conj 0.3 0.8 1.5 2.8 4.3 

( C )  

8 0.250 280 0.546 825 0.871 821 1.193 742 2.020 109 
16 0.239 443 0.555 047 0.933 552 1.347 115 2.283 265 
24 0.236 318 0.559 328 0.958 926 1.412 260 2.380 163 
32 0.234 864 0.562 143 0.973 603 1.449 876 2.432 493 
44 0.233 752 0.565 095 0.987 490 2.479 424 
56 0.233 168 0.567 241 0.996 720 2.509 360 

2.524 331 64 0.232 920 0.568 400 1.001 444 

Extr 0.2 (3) 0.6 (3) 1.1 (6) 1.6 (5) 3.0 (4) 

Conj 0.25 0.666.. . 1.25 2.0 3.25 



Critical properties of Takhtajan- Babujian models 4407 

obtained by using the VBS approximants (Van den Broeck and Schwartz 1979, Hamer 
and Barber 1981) and the conjectured values are those given by (1.6) and our subsequent 
analysis (see 6.1). We clearly see that the extrapolated results do not agree with the 
conjectured ones, which is not a surprise since from our analytical results of 9 3 we 
already expect a correction term of order ( l / ln  L )  in the estimator (5.2), producing a 
very slow convergence rate of that sequence. However the same type of correction 
occurs when we use in (5.3) the energies obtained by solving (3.2). We expect that a 
cancellation, if not complete at least partial, of this term may occur if we use, instead 
of (5.2), the sequence 

(5.3) 

where as before E:t ( r  = 0, 1,2, . . .) denote the lowest energy in the sector r obtained 
by using the string hypothesis. Consequently the analytical result (3.5b) with the above 
sequence should give us a better estimate 

D,( L )  = [ ( E ,  - Eo) - ( E ; t -  E 3 ] L 2 /  7T2 

X ,  = D,(CO) + r2 /4s  (5.4) 
for the scale dimensions. 

and 2, 
respectively. We also show the VBS extrapolations as well as the estimates (5.4) in the 
lines marked VBS. With some exceptions for S >  1 (the cases denoted by the symbols 
t or $), which we shall discuss below, there is good agreement with the conjectured 
values (1.6) (see also (6.1)). Moreover the extrapolations in these cases are quite stable. 

As we discussed in § 3 for certain values of the spin S and sector r (as for cases 
marked by the symbol t in table 6(b) and 6(c)), the string solution is not valid even 
in the L+ CO limit. Instead of having a simple sea of strings it appears in these cases 
that defects are not taken into account in the derivation of (3.2). Therefore the sequence 
(5.3) may still produce poor estimates because the first logarithmic correction of E,( L )  
and ESt(L) may be very different. In these cases by introducing strings and defects 
we derived a different set of equations than (3.2). Solving these equations numerically 
we obtain the energies E$"(L) having in principle a o( 1/L2 In L )  term which is a better 
approximation to the corresponding term of E , ( L )  than that obtained from E:'(L). In 
these cases the sequence 

In table 6(a)-(c) we show the sequences (5.3) for r = 1-5 and S =  1, 

F"L) = [ ( E ,  - Eo) - (Efef- E r ) ] L 2 /  r2 ( 5 . 5 )  

may produce better estimates for the scaling dimensions, where we have used the fact 
that in the L-, CO limit the ground state does not show defects, being exactly represented 
by a sea of 2s-strings. It is important to mention (Alcaraz and Martins 1988b) that 
the o( 1/L2) correction term for the energies Etef( L )  are the same as the corresponding 
E:t(L) and consequently the estimate for these dimensions are 

X ,  = Fs(a3) + r2/4S. (5.6) 
In table 7 we show the sequences (5.5) for the cases where these defects occur (denoted 
by t in table 6(b) and (c)). We then see clearly that the extrapolated results and the 
estimate (5.6),  for the line marked VBS, are in much better agreement with the conjec- 
tured results. In the extrapolation procedure we introduce a small parameter E to 
measure the stability of the converged values (Hamer and Barber 1981). In all these 
cases these values are very stable even for reasonably large values of E which imply 
that the string-defect solution has a o( l /L2  In L )  correction term not much different, 
if not equal, to the corresponding term of the true energy E ,  obtained by solving (2.6). 
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Table 6. Finite-size sequences of the quantities D,( L ) ,  r = 1-5 for the ( a )  spin-1, ( b )  spin-; 
and (c) spin-2 model (see (5.3)). The extrapolated results denoted by VBS are obtained 
from (5.4) and the conjectured values from (1.6) and (6.1). 

L Di(L) D,(L) Q ( L )  D,(L) D,(L) 

(0) 

8 0.118 550 0.014 8478 0.061 6628 0.036 8408 0.045 0017 
20 0.121 419 0.005 3599 0.088 5157 0.018 4639 0.064 9935 
36 0.122 445 0.003 0060 0.101 4681 0.009 964! 0.077 3298 
52 0.122 889 0.002 0877 0.107 3706 0.006 6169 0.087 2656 
68 0.123 146 0.001 8149 0.110 7617 0.004 9272 0.093 6852 
84 0.123 317 0.001 5791 0.1129719 0.003 9367 0.098 1576 

Extr 0.124 (6) 0.000 (3) 0.124 (4) 0.000 (7) 0.124 ( 5 )  

VBS 0.374 (6) 1.000 (3) 2.374 (4) 4.000 (7) 6.374 (5) 

Conj 0.375 1.0 2.375 4.0 6.375 

( b )  
8 0.125 7411 0.078 182 0.039 856 0.050 9821 0.065 433'4 

20 0.127 4501 0.093 447 0.019 095 0.060 2161 0.055 793'4 
32 0.128 4491 0.101 362 0.012 824 0.070 1771 0.058 3421 
44 0.129 0621 0.106 101 0.009 826 0.077 3221 0.062 747$ 
56 0.129 486i 0.109 307 0.008 074 0.082 623t 0.067 051$ 
64 0.129 704: 0.110941 0.007 262 0.085 4661 0.069 668$ 
80 0.130046t 0.113453 0.006 114 0.074 263$ 

~~~~ ~ ~ ~ 

Extr 0.133 (1) 0.133 (2) 0.000 (9) 0.0 (9) 0.0 (9) 

VBS 0.299 (7) 0.799 (8) 1.500 (9) 2.7 (5) 4.2 (6) 

Conj 0.3 0.8 1.5 2.8 4.3 

( C )  

8 0.117 4431 0.074 959 0.066 1141 0.065 623 0.063 loo? 
0.117 2511 0.090 187 0.062 1631 0.045 327 0.041 3451 16 

24 0.117 8581 0.100 351 0.064 649$ 0.035 572 0.041 lOO+ 
32 0.118 3791 0.107 251 0.067 6591 0,029 678 0.043 087 1 
44 0.118 976t 0.1 14 341 0.071 6981 0.046 7731 
56 0.119 423i 0.1 19 270 0.075 026$ 0.050 284t 
64 0.1 19 6651 0.121 831 0.076915i 0.052 4121 

Extr 0.125 (1) 0.166 (6) 0.0 (9) 0.00 (1) 0.0 (8) 

VBS 0.500 (1) 0.666 (6) 1.13 (4) 2.00 (1) 3.2 (1) 

Conj 0.5 0.666.. . 1.25 2.0 3.25 

The cases denoted by $ in table 6 ( b )  and (c), specifically sector 5 of spin 3 and 
sector 3 of spin 2,  also do not give us good estimates for the scaling dimensions. These 
states do correspond, in the L+oo limit, to a sea of strings and the poor convergence 
rate in these cases are of a different nature than the preceding cases denoted by $. In 
these cases the string solution itself, although valid in L -$ CO, does not give a good 
value for the o( 1/L2 In L )  term. We conclude from this that the imaginary part of the 
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Table 7. Finite-size sequences of the quantities F s ( L )  (see ( 5 . 5 ) ) .  The first (last) two 
columns refer to the spin-; (2) model. The extrapolated results denoted by VBS are obtained 
from (5.6) and the conjectured values from (1.6) and (6.1). 

~~ ~ 

8 0.340 819 0.459 312 0.338 704 0.510 718 
20 0.227 749 0.373 160 0.221 006 0.423 842 

0.188 362 0.363 756 32 0.195 369 0.319 887 
44 0.179 884 0.287 819 0.172 872 0.326 357 
56 0.170 758 0.266 372 0.163 769 0.300 871 
64 0.166 494 0.255 575 0.159 519 0.287 896 
80 0.160 426 

Extr 0.1333 (2) 0.133 (0) 0.12 ( 5 )  0.12 (6) 

VBS 0.2999 (8) 2.799 (6) 0.50 (0) 3.25 (1) 

Conj 0.3 2.8 0.5 3.25 

roots of (2.6) being not fixed (integer or half-integer), as in (3.2), produce different 
contributions not only of order 1/L2 but also of order (1/L2 In L ) .  In order to obtain 
better estimates, in these cases, we extrapolate the difference of these energies with 
other states, testing the stability of the convergence. A good convergence for sector 5 
of spin and sector 3 of spin 2 was obtained by using the sequences S,= 
[(&-E;’)  - ( E 4 - E : t ) ] L 2 / r r 2  and S 2 =  [ ( E 5 - E t e F ) -  ( E 3 - E s t ) ] L 2 / ~ * ,  respectively. 
*These sequences give the extrapolated results S,(co) = -0.00 (1) and S2(co)  = 0.00 (2) 
producing, from (3.5b) and the results of tables 4 and 5, the estimates X 5  = 4.29 (0) 
(spin i) and X ,  = 1.25 (2) (spin 2) to be compared with our conjecture (see 6.1): 
X 5  = % = 4.291 66. . . (spin i) and X ,  = i = 1.25 (spin 2). 

6. Conclusion and summary 

In this paper we calculate the conformal anomaly and scaling dimensions of the 
operators governing the criticality of the spin S = 1,; and 2 Takhtajan-Babujian models 
(2.3)-(2.5). These quantities were calculated by exploiting their relations with the 
eigenspectrum of the model in a finite chain (1.7) and (1.8). In conjunction with 
analytical ( 8  3 and the appendix) and numerical results ( B O  4 and 5 )  we ai!alyse the 
Bethe ansatz equations for these models for finite chain and periodic boundary 
conditions. This conjunction was necessary because the presence of logarithmic finite- 
size corrections produce poor convergence rates. These logarithmic corrections, as in 
the Heisenberg model (S = l ) ,  we believe indicate that the operator responsible for 
the corrections to scaling is marginal ( X  = 2). 

In fact, by introducing an anisotropy constant in the Takhtajan-Babujian model, 
still preserving integrability (Sogo et a1 1983, Babujian and Tsvelick 1986, Kirillov and 
Reshetikhim 1987a, b) we can show (Alcaraz and Martins 1988b) that the operator 
responsible for the corrections to scaling is irrelevant ( X  > 2) for general values of the 
anisotropy except at the isotropic point (the Takhtajan-Babujian model) where it 
becomes marginal, originating the logarithmic corrections. 
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Our numerical results are in good agreement with the conjectured values (1.5) and 
(1.6) (Affleck 1986a, b, c, Affleck and Haldane 1987). This agreement strongly supports 
the conjecture that the Wess-Zumino- Witten-Novikov non-linear U model, with topo- 
logical charge k = 2 and group G = SU(2), is the underlying field theory describing the 
criticality of these spin models. 

Our numerical results also indicate scaling dimensions of irrelevant operators not 
given in the conjecture (1.6). From the string assumption (3.1) the lowest eigenenergy 
of a given sector r corresponds to a configuration of complex roots having a single 
{r/2S}-string in a sea of 2S-strings, where {m/n} is the rest of the ratio m / n .  Our 
numerical results indicate that the corresponding amplitude, for these sectors, has a 
contribution which depends on { r/2S} beyond the simple string type contribution: 
r2/4S. All our results lead us to the following conjecture for the scaling dimensions 
associated with the lowest energy of the sector r of the spin-S model: 

r2-R’ (R+2)R  
4S 4(1+S) 

X ,  =- + r = 1,2, .  . . 

where R is the rest of the ratio r/2S. The conjecture (6.1) reproduces (1.6) for r G  2S 
and agrees with our results of $ 5 for r >  2s. 

Since the above dimensions are obtained from the spin models with periodic 
boundary conditions we expect to obtain them from the modular invariant solution 
of the SU(2) Kac-Moody model with central charge k (Gepner and Witten 1986, 
Capelli eta1 1987). In the case where k is odd a single solution ( A  connected with 
the simply laced Lie algebra Aktl)  occurs while, when k.is even, other solutions occur 
(A ,  D and E connected with simply laced Lie algebra A, D and E ) .  The above 
dimensions (6.1) and our results (Alcaraz and Martins 1988b) of the anisotropic version 
of the Takhtajan-Babujian models indicate that they are realisations of the modular 
invariant solution of type A. 
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Appendix. The leading finite-size corrections 

In this appendix we will derive, based on the string assumption (3.1), the leading 
finite-size corrections for the eigenenergies of the spin-S Takhtajan-Babujian models. 
Our calculation will be based on a method developed by Woynarovich and Eckle 
(1987a, b) (see also Hamer et al 1987). 

We will calculate the finite-size corrections of the lowest energies EL of the sector 
r = 0,1,2, . . , , of these spin models. These energies are given by (3.2) and (3.4) with 
Q; given by (3.3). For a given distribution of strings { vk} it is convenient to introduce 
the density of roots u;(A) for the 2S-strings (A;”, j =  1,2, .  . . , v,) in the sector r of 
the finite system by 

u;(A) = dZ;/dA (A1 a )  
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where 

The above functions 4 and 8 are defined in (3.2). When L+ a3 the roots tend toward 
a continuous distribution with density given by 

1 
u , ( ~ ) = - - : ; s , ~ s ( ~ ) - ( T ~ ~ ( u ) ~ : ; s , ~ s ( A  21r -U) du ('42) 

where the prime indicates the derivative. The above integral equation has the solution 
(Takhtajan 1982, Babujian 1982) 

and from (3.4) the energy per site is given by 
+cs 

-m 
('44) 

Using equations (3.2), (3.4) and ( A l ) - ( A 4 )  and after some lengthy manipulations we 
can express the difference of the energy and density of roots from their bulk limit 
(L - ,  00) values by 

and 
. r+x 

I 
L -2s.2s-r -- I J P(A-u)S(u)du  - -V I  

2 T  
respectively, where 

and 

According to the method of Woynarovich and Eckle (1987a, b) (see also Hamer et a1 
1987), for large L, the leading finite-size corrections are given by 

p ( A - A )  1 p ' ( A - A )  
4lrL 12L2 a L ( A )  

u L ( A )  - (T,(A) u L ( u ) ~ ( A  - U )  du - +- 
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where A is the largest magnitude root determined by the boundary condition 

[,:g;(A)dA=---- (1-2r)  
2L * 

The first-order corrections, which are o( 1/L2), can be calculated by dropping the large 
bracket terms in (A12), which are responsible for logarithmic corrections. Defining 

R ( h )  = P ( h ) / 2 r  f ( h )  = c+,(h + A) ('414) 

X'(A) = uL(A + A )  t = A - A  ('415) 

equation (A12) now becomes 

X ' ( t ) = f ( t ) + j o ' X ' ( u ) R ( r - u )  du-- R( r )+  R ' ( f )  
L 12L21+;(A) 

which is the standard form of the Wiener-Hopf equation (see, for example, Morse 
and Feshbach 1953). To solve this equation we introduce the Fourier transforms 

t s o  
t 5 O  

+a' 

ff:(w) = j-m exp(iwt)X:(t) d t  x:( t )  = 

and the corresponding Fourier pairs f (  t )  e?( w), R ( t )  - I?( w) .  After some algebra 
we find that R:( w)  is given by 

g:(w) = C'(w1-t G+(w)[Q+(w)+P(w)l (A18) 

where 

1 i w  
C'(w)=-- 

2L 1 2 L 2 4 ( A )  

(A201 
i w  

g = i r ( + -  1/12S). 1 ig - P ( w )  = --+ 
2L 12L20-;(A) 12L2a;(A) 

From equation (A16) and definition (A15) we obtain 

G- ( i r )  exp(-.rrA) -- - 1 +--- r ig 
T 2L LG+(O) 12L2a;(A) 

and 

ig (+;(A) = g2 +-+ G-(- i r )  exp(-rrA) 
24L2a;(A) 2L 

Finally, using (A18), (A21) and (A22) in ( A l l )  and approxilnating o,(A)- 
exp(-7rA) we obtain the first-order correction for the lowest energy of sector r :  

('423) 

If we now use the above solution (A21) and (A22) and include the large brackets of 
(A12) we can solve perturbatively the Wiener-Hopf equation (A16) in order to obtain 
the next correction terms (Alcaraz and Martins 1988b): 
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for the ground-state energy ( r  = 0) and 

n(ln L )  
( '425)  

for the mass gap amplitude of sector r. 
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